1)
$$g(x) = -5$$

 $g'(x) = \lim_{h \to 0} \frac{-5 + 5}{h}$
 $= \lim_{h \to 0} \frac{0}{h} = 0$
 $g'(x) = 0$

2)
$$h(x) = \frac{3}{2}x + 3$$

 $h'(x) = \lim_{h \to 0} \frac{\frac{3}{2}(x+h) + 3 - (\frac{3}{2}x + 3)}{\frac{3}{2}x + \frac{3}{2}h + 3 - \frac{3}{2}x - 3}$
 $= \lim_{h \to 0} \frac{\frac{3}{2}x + \frac{3}{2}h + 3 - \frac{3}{2}x - 3}{h}$
 $= \lim_{h \to 0} \frac{\frac{3}{2}h}{h} = \frac{3}{2}$
 $h'(x) = \frac{3}{2}$

3)
$$f(t) = 5t - t^{2}$$
; $(1,2)$
 $f'(t) = \lim_{h \to 0} \frac{5(t+h) - (t+h)^{2} - (5t - t^{2})}{h}$
 $= \lim_{h \to 0} \frac{5t + 5h - (t^{2} + 2th + h^{2}) - 5t + t^{2}}{h}$
 $= \lim_{h \to 0} \frac{5h - 2th - h^{2}}{h}$
 $= \lim_{h \to 0} (5 - 2t - h)$
 $= 5 - 2t$
 $f'(1) = 3$

4)
$$f(x) = 7 - 9x^{2}$$
; $(1, -2)$
 $f'(x) = \lim_{h \to 0} \frac{7 - 9(x+h)^{2} - (7 - 9x^{2})}{h}$
 $= \lim_{h \to 0} \frac{7 - 9(x^{2} + 2xh + h^{2}) - 7 + 9x^{2}}{h}$
 $= \lim_{h \to 0} \frac{7 - 9x^{2} - 18xh - 9h^{2} - 7 + 9x^{2}}{h}$
 $= \lim_{h \to 0} \frac{-18xh - 9h^{2}}{h}$
 $= \lim_{h \to 0} (-18x - 9h) = -18x$
 $f'(x) = -18x$
 $f'(1) = -18$

5) $f(x) = \chi^{2} + 2x + 1$; x = -4point (-4, 9) $f'(x) = \lim_{h \to 0} \frac{(x+h)^{2} + 2(x+h) + 1 - (x^{2} + 2x + 1)}{h}$ $= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} + 2x + 2h + 1 - x^{2} - 2x - 1}{h}$ $= \lim_{h \to 0} \frac{2xh + h^{2} + 2h}{h}$ $= \lim_{h \to 0} (2x + h + 2) = 2x + 2$ f'(-4) = -6

Tangent: y-9=-6(x+4)

6)

$$f(x) = \begin{cases} 2kx^{2} - x, & x < 3 \\ x^{2} + x, & x \ge 3 \end{cases}$$

$$\lim_{x \to 3^{-}} (2kx^{2} - x) = \lim_{x \to 3^{+}} (x^{3} + x)$$

$$18k - 3 = 30$$

$$18k = 33$$

$$k = \frac{33}{18}$$

7)
$$ROC = \frac{f(2) - f(1)}{2 - 1}$$

= 24 - 18
= 6

8)
$$ROC = \frac{f(4) - f(5)}{9 - 5}$$

= $\frac{44 - 32}{4}$
= $\frac{3}{4}$

9)
$$f'(3) \approx \frac{f(5) - f(2)}{5 - 2}$$

= $\frac{32 - 24}{3}$
= $\frac{8}{3}$
 $f'(3) \approx \frac{8}{3}$